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Abstract

Aircraft measurements using a field spectrometer over variety of ground surfaces in Israel reveals that under clear sky conditions the

shortwave infrared (SWIR) spectral bands around 1.6 and 2.1 mm are highly correlated with the visible—blue, green, and red— spectral

bands. Empirical linear relationships, such as r0.469 = 0.25r2.1; r0.555 = 0.33r2.1; r0.645 = 0.5r2.1; and r0.645 = 0.66r1.6, were found to be

statistically significant and consistent with previous findings. Based on the above relationships, a modified vegetation index (VI) is

proposed and named Aerosol Free Vegetation Index (AFRI). Two versions of this VI are formulated as: AFRI1.6 = (rNIR � 0.66r1.6)/(rNIR +

0.66r1.6) and AFRI2.1 = (rNIR � 0.5r2.1)/(rNIR + 0.5r2.1). It is shown that under clear sky conditions, the AFRIs (and especially AFRI2.1)

closely resemble the Normalized Difference Vegetation Index (NDVI) and their values are almost identical. The advantage of the derived

AFRIs, based on the ability of the SWIR bands is to penetrate the atmospheric column even when aerosols such as smoke or sulfates exist.

Consequently, these indices have a major application in assessing vegetation in the presence of smoke, anthropogenic pollution, or volcanic

plumes. This was demonstrated by applying the AFRI for a biomass burned forest in Brazil. Limited success of these indices is expected in

case of dust due to presence of larger particles that are of similar size to the wavelength and therefore not transparent at 2.1 mm. The AFRIs

can be implemented to data from any sensor that has the SWIR bands. Currently, the most commonly used of such instruments are the

Landsat–Thematic Mapper (TM) and Advanced Thematic Mapper Plus (ETM+), Moderate Resolution Imaging Spectrometer (MODIS),

Advanced Spaceborne Thermal Emission and Reflection (ASTER), and Japanese Earth Resources Satellite-Optical System (JERS-OPS).

Although the AFRI2.1 was demonstrated to perform better than the AFRI1.6, the latter still can be used for the same application in

conjunction with instruments that have onboard only the 1.6-mm band, such as Systeme Probatoire d’Observation del la Terre (SPOT4)–

VEGETATION, Indian Remote Sensing (IRS-1C/D), and Resource-21. D 2001 Elsevier Science Inc. All rights reserved.

1. Introduction

During the last three decades, and almost since the launch

of the first remote sensing satellite, considerable efforts have

been conducted to study the state and dynamics of vegeta-

tion by means of vegetation indices (VIs) (Bannari, Morin,

Bonn, & Huete, 1995). Different VIs have been developed

based on combinations of two or more spectral bands,

assuming that multiband analysis would provide more

information than a single one. Most VIs use radiance, sur-

face reflectance (r), or apparent reflectance (measured at the

top of the atmosphere) values in the red (R), and the near

infrared (NIR) spectral bands and can be collected by any

field, airborne, or spaceborne spectrometer or radiometer

that covers these spectral regions. The indices have been

proven to be well correlated with various vegetation param-

eters such as green biomass (Tucker, 1979), chlorophyll

concentration (Buschmann & Nagel, 1993), leaf area index

(Asrar, Fuchs, Kanemasu, & Hatfield, 1984), foliar loss and

damage (Vogelmann, 1990), photosynthetic activity (Sellers,

1985), carbon fluxes (Tucker, Fung, Keeling, & Gammon,

1986), and more. Also, they have been found to be useful for

different image analyses like crop classification (Ehrlich &

Lambin, 1996), phenology (Justice, Townshend, Holbend, &

Tucker, 1985), green coverage (Elvidge & Chen, 1995), and

change detection (Lambin & Strahler, 1994).

The most widely used VI for agricultural, forestry,

rangeland, and ecological applications is the Normalized

Difference Vegetation Index (NDVI), formulated as (Rouse,

Haas, Schell, Deering, & Harlan, 1974):

NDVI ¼ ðrNIR � rRÞ=ðrNIR þ rRÞ: ð1Þ
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This index, as well as its several other modifications that are

less popular, is based on the difference between the

maximum absorption of radiation in the red due to the

chlorophyll pigments and the maximum reflection of

radiation in the NIR due to the leaf cellular structure, and

the fact that soil spectra, lacking these mechanisms,

typically do not show such a dramatic spectral difference.

In spite of the intensive use of the NDVI and its variety

of applications, several limitations of the index are known.

Among these are the sensitivity for soil (especially dark and/

or wet) background (Huete, 1987), saturation of the index

values in case of dense and multilayered canopy (Lillesaeter,

1982), and sensitivity for atmospheric influence (Holben,

1986) since aerosol increases the apparent reflectance in the

red band by scattering sunlight directly to the sensor and

decreases to a lesser degree the reflectance in the NIR

by absorption of sunlight (Fraser & Kaufman, 1985).

Improvements of the NIR and red-based indices underwent

in three directions:

1. Development of new VIs that minimize the back-

ground influence. The leading index in such an effort is

the Soil-Adjusted Vegetation Index (SAVI) calculated as

(Huete, 1988):

SAVI ¼ ðrNIR � rRÞð1þ LÞ=ðrNIR þ rR þ LÞ ð2Þ
where L is a canopy background adjustment factor that

accounts for differential red and NIR extinction trough the

canopy. Usually L= 0.5 is used for semivegetated areas.

Other modifications are the Transformed SAVI (Baret,

Guyot, & Major, 1989), Soil-Adjusted Ratio Vegetation

Index (SAVI2) (Major, Baret, & Guyot, 1990), and Modified

SAVI (Qi, Cheh, Huete, Kerr, & Sorooshian, 1994).

2. Kaufman and Tanré (1992) developed several VIs that

directly correct the red radiance for aerosol effect by

incorporating the blue (B) band. These are the atmospheric

resistant vegetation index (ARVI; Eq. (3a)) and the soil-

adjusted and atmospheric resistant vegetation index

(SARVI; Eq. (4)):

ARVI ¼ ðrNIR � rRBÞ=ðrNIR þ rRBÞ ð3aÞ
in which the subscript RB denotes the red and blue bands,

defined as (Eq. (3b)):

rRB ¼ rR � gðrB � rRÞ ð3bÞ
where g is recommended by the authors to have a value of 1.

Note that in ARVI, r stands for surface reflectance or

apparent reflectance after correction for molecular scattering.

SARVI ¼ ðrNIR � rRBÞð1þ LÞ=ðrNIR þ rRB þ LÞ ð4Þ
where the value L is expected to be similar to that of Eq. (2).

Another modification of this approach is the modified

SARVI (Huete & Liu, 1994).

3. Development of the use of the shortwave infrared

(SWIR) spectral bands for remote sensing of surface cover

in the absence of aerosol effect (Kaufman & Remer, 1994;

Kaufman et al., 1997) and construction of VIs that are

independent of the aerosol loading (Kaufman & Remer,

1994; Miura, Huete, van Leewen, & Didan, 1988). The

following section discusses this issue.

2. Use of the SWIR spectral bands for vegetation studies

In contrast to the wide use of the visible and NIR spectral

bands, a limited use has been done with the SWIR spectral

bands (1.6 and 2.1 mm) in vegetation studies. Tucker (1980)

showed that the 1.6-mm band is the most sensitive to the

liquid water content of leaves. Gao (1996) suggested to use

the 1.24-mm band in a liquid water VI that maximizes

sensitivity to liquid water content while, in contrast to

NDVI, remaining insensitive to water vapor, minimizes

the different sensitivity to the depth of penetration of solar

radiation between the two bands used in the index. It was

found that the 2.1-mm band is also very sensitive to liquid

water content, but due to its lower reflectance, it is more

similar to the 0.66-mm band in its dependence on surface

cover than the 1.24- or 1.6-mm bands, and therefore has the

potential to better mimic the NDVI without the aerosol

interference (Kaufman et al., 1997).

Vogelman (1990) and Vogelmann and Rock (1988,

1989) show that VIs based on the ratio SWIR/NIR (1.6/

0.83 and 2.1/0.83 mm) provide improved results in mon-

itoring the state of deciduous and coniferous forests and in

discriminating between different stages of the forest dam-

age. Hunt and Rock (1989) tested the ability of such ratios

to determine leaf relative water content and equivalent

water thickness of different plant species with different

leaf morphology. The 1.6-mm band also was shown to be

sensitive to senescence vegetation (Qi, Marsett, & Heil-

man, 2000).

The use of the 2.1-mm band was suggested by Kaufman

et al. (1997) for remote sensing of aerosol over land and

for atmospheric correction of the Earth imagery. In this

work, the authors underlined the characteristics of the 2.1-

mm band:� The 2.1-mm band is located in one of the atmospheric

windows and, therefore, less influenced by atmospheric

gasses such as O2, O3, H2O, CO2, etc.� It is rather far from the Earth’s peak emission at about

10 mm, and thus, in contrast to the 3.75-mm band (Holben,

Vermote, Kaufman, Tanré, & Kalb, 1992), is not affected by

uncertainties in the correction of emitted radiation.� The wavelength of this band is much larger than the

size of the most common types of aerosols, such as smoke

or sulfates (but not larger than dust), and consequently

penetrates the atmospheric column even if these aerosols

exist (Kaufman & Tanré, 1994).� Biophysiologically speaking, as chlorophyll absorption

by healthy vegetation tends to reduce the reflectivity in the

visible portion of the electromagnetic spectrum, liquid water

in the plants, associated with the presence of chlorophyll,

absorbs radiation in the 2.1-mm region.
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� Similarly, factors that reduce reflectivity of soils in the

visible region, such as soil moisture or self-shadow, act in

the same direction in the SWIR region as well.

In framework of the efforts to develop applications of

the 2.1-mm band for Terra — MOderate Resolution Imag-

ing Spectrometer (MODIS) instrument, Kaufman et al.

(1997) examined the relationships between the reflectivity

of this band and those of the red and the blue ones using

atmospheric corrected Landsat Thematic Mapper (TM) and

Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS)

imagery. Their work reveals that high correlation exists

between the surface reflectance in the blue (0.469 mm), red

(0.645 mm), and 2.1 mm. Based on the large variety of

ground features, it is shown that surface reflectance at

0.469 mm (r0.469) and 0.645 mm (r0.645) can be predicted

from that at 2.1 mm (r2.1), within Dr = ± 0.006 for

r2.1� 0.10, using

r0:469 ¼ 0:25r2:1 ð5aÞ

and

r0:645 ¼ 0:5r2:1: ð5bÞ

Miura, Huete, van Leeuwen, & Didan (1988) used the same

assumptions as above (i.e., the SWIR spectral bands are

relatively transparent to smoke, yet remain sensitive to

green vegetation) to derive several SWIR-based VIs in order

to test their ability to minimize atmospheric smoke

contamination (Eqs. (6a) and (6b)):

NDVIMIR ¼ ðrNIR � rMIRÞ=ðrNIR þ rMIRÞ; ð6aÞ

SAVIMIR ¼ ðrNIR � rMIRÞð1þ LÞ

=ðrNIR þ rMIR þ LÞ: ð6bÞ

In these VIs, MIR stands for either the 1.6- or 2.1-mm
spectral bands that substitute for the red band in Eqs. (1)

and (2). The authors recommended the use of the 2.1-mm
band for vegetation monitoring over burned and smoked

forest. However, they also admitted that these VIs do not

function well when the area was not fully covered with

green biomass.

The results presented above raised up the importance of

studying the ability of the 1.6- and the 2.1-mm bands to

predict the surface reflectance in the visible bands (0.469,

0.555, and 0.645 mm). Thus, the objective of this article is to

explore relationships between the visible and the SWIR

spectral bands and the possible use of the latter (1.6- and

2.1-mm bands) as a replacement of the red band in VI for

conditions with high aerosol concentration, namely smoke.

The relationships among the different bands were inves-

tigated in Israel, in a variety of ecosystems, and then the

proposed method was implemented in Brazil for detecting

vegetation under heavy-smoke condition.

3. Methods

3.1. Experimental design and data processing for the Israeli

data set

A field campaign was conducted in Israel in May

1997. In the framework of this experiment, several instru-

ments were installed on a light aircraft. These were an

Analytic Spectral Devices (ASD) portable point spectrom-

eter, a Sony video camera, and a Telatemp Model AG-42

infrared thermometer. These instruments were aligned to

point down at nadir and synchronized for the same time

to an accuracy of 1 s. In addition, a Magellan global

positioning system was used for precise determination of

the plane’s location. The spectrometer has a spectral

resolution of 3 nm between 0.4 and 1 mm, and about

10 nm resolution between 1 and 2.5 mm. The field of

view had been set to 18�, corresponding to 100 m

diameter of average area on the ground for a flight height

of 300 m. This altitude is low enough to minimize the

need for atmospheric correction of the spectral reflectance

data, while averaging over sufficient large area (� 100 m2).

Spectra were sampled once every 10 s. This article deals

with a flight that was performed on May 6, 1997. It was a

clear and dry day. Data were collected along a transect

across the desert transition zone from the northern Negev

desert to the coastal plain of the Mediterranean Sea.

Average annual rainfall ranges from 100 mm in the south

to 500 mm in the north. Note that the campaign was

conducted in the peak biomass season for most natural

vegetation and agricultural crops, although it was the

period of harvesting the winter wheat and the beginning

of summer crops, such as corn and cotton. Consequently, a

variety of land cover types were targeted including agri-

cultural fields of different crops, orchards, forests, grass-

lands, and bare surfaces. Naturally, these targets exhibit the

whole range of vegetation cover, from exposed soils to

fully covered green fields.

Target reflectance was determined by dividing ground

radiance to that reflected from a barium sulfate (BaSO4)

plate. The plate radiance had to be measured on the ground

before and after the flight because the overhead wing

structure of the plane made in-flight plate measurements

impossible. The target radiance measurements can there-

fore be separated from the white plate measurement by a

considerable time and distance. Atmospheric correction

based on the 6S radiative transfer code (Vermote, Tanre,

Deuze, Herman, & Morcrette, 1997) was applied to

account for the � 300 m air column difference between

the plane and ground, while the white plate measurement

does not. However, this effect is considered to be minimal

due to the clear dry day and the short flight time (about 1.5

h around the local noon when the solar zenith angle

changes slowly with time.

Forty-eight video images were selected from the in-

flight videotape, representing different vegetation types and
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percent cover. Fig. 1 (A1 and B1) represents two examples

of such images. These video images were converted into

digital form by means of a frame grabber. Using the

supervised classification algorithm of the ERDAS-imagine

software, the images were classified into two classes —

vegetation and bare soil (Fig. 1, A2 and B2). Ratio

between these classes reveals the vegetation fraction value

(F) for each image (19.2% and 75.8% in the examples in

Fig. 1). For the selected images, the time-matched spectra,

acquired by the airborne-mounted ASD, were extracted

Fig. 1. Two examples of row video images (A1 and A2), classified images (B1 and B2), and their matched spectra (A3 and B3). Vegetation fractions are 19.2%

and 75.8%, respectively).
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(Fig. 1, A3 and B3). The ASD spectral bands were

integrated according to several MODIS wavebands as

described in Table 1.

3.2. Experimental design and data processing for the

Brazilian data set

A field project called ‘‘Smoke, Clouds, and Radiation —

Brazil (SCAR-B)’’ took place in the Amazon basin for

studying characteristics of the above, related to fires during

the biomass burning season (August–September) of 1995

(Kaufman et al., 1998). In the framework of this campaign,

several NASA ER-2 aircraft flights were conducted. The

ER-2 was equipped with a cross-track scanning spectrom-

eter (MODIS airborne simulator), a downward looking lidar

(cloud lidar system), a visible video camera system, and a

hyperspectral imager (AVIRIS).

The AVIRIS is used to acquire reflected solar radiation in

224 narrow (10 nm width) contiguous spectral bands from

400 to 2500 nm (Vane et al., 1993). It is a whiskbroom

imager, consisting of four spectrometers and linear array

detectors. It flew at 20-km altitude, related to a 20-m spatial

resolution at nadir and a 10-km swath width. Spectral and

radiometric calibrations of the AVIRIS are performed yearly

in the laboratory, while in-flight calibrations are conducted

before, during, and after each flight season. The recently

modified onboard calibrator is expected to achieve 1%

stability in radiometric calibration.

The specific data set that was used for the current

research was acquired over the Cuiabá region in the Ama-

zon basin in Brazil on August 25, 1995. The image

dimensions are 600	 800 pixels (192 km2).

4. Results and analysis

4.1. Relationships between the visible and the SWIR bands

Correlation matrix of the reflectance values correspond-

ing with the 48 images that were selected from the Israeli

flight images and related to the MODIS spectral bands are

presented in Table 2. One might notice the relatively high

correlation coefficient (r) values between each of the two

SWIR bands and the three visible bands.

Scatterplots of the visible bands vs. the SWIR bands

are presented in Fig. 2. Linear relationships between the

1.6-mm and the visible bands are calculated to be (Eqs.

(7a)–(7c)):

r0:469 ¼ �0:03þ 0:29r1:6; ð7aÞ

r0:555 ¼ �0:008þ 0:43r1:6; ð7bÞ

r0:645 ¼ �0:07þ 0:66r1:6: ð7cÞ

These linear relationships can be improved by applying

curvilinear relationships that produce slightly higher

correlation coefficients than those presented in Table 2

(r=.96, .95, and .96 from the blue, green, and red bands,

respectively). The curvilinear relationships can be for-

mulated by second-order polynomial equations (Eqs.

(8a)–(8c)):

r0:469 ¼ 0:016þ 0:03r1:6 þ 0:36r21:6; ð8aÞ

r0:555 ¼ 0:031þ 0:19r1:6 þ 0:33r21:6; ð8bÞ

r0:645 ¼ 0:010þ 0:14r1:6 þ 0:72r21:6: ð8cÞ

Similarly, the linear relationships between the 2.1-mm
band and the visible bands are formulated as (Eqs.

(9a)–(9c)):

r0:469 ¼ 0:008þ 0:23r2:1; ð9aÞ

r0:555 ¼ 0:05þ 0:31r2:1; ð9bÞ

r0:645 ¼ 0:004þ 0:52r2:1: ð9cÞ

Since the intercepts are close to zero, these relationships

can be generalized to those suggested by Kaufman et

al. (1997), and we can assume that the reflectance

values of the blue, green, and red bands are 0.25, 0.33,

and 0.5 of the 2.1-mm band, respectively, where Eqs.

(5a) and (5b) can be used as hypothetical models.

Based on Kaufman et al. (1997) and other data sets, it

is assumed that the hypothetical models are global

values that can be used in different regions. The

difference of the observed data in each of the visible

bands from the respective hypothetical models can be

Table 2

Correlation matrix among reflectance values for 48 spectra of the Israeli

data set

r0.469 r0.555 r0.645 r0.86 r1.6 r2.1

r0.469 1

r0.555 .92 1

r0.645 .98 .92 1

r0.86 .13 .43 .11 1

r1.6 .94 .94 .95 .31 1

r2.1 .97 .90 .98 .09 .95 1

Values in bold have special interest for the current study.

Table 1

Relevant MODIS spectral bands for examining relationships between

different spectral bands in the visible, NIR, and SWIR regions

Wavelength (nm)

Center Minimum Maximum Width

3 469 459 479 20 blue

4 555 545 565 20 green

1 645 620 670 50 red

2 860 841 876 25 NIR

6 1640 1628 1652 24 SWIR

7 2130 2105 2155 50 SWIR

MODIS

band

Spectral

region
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obtained by the unbiased estimate of the variance (s2,

Eqs. (10a)–(10c)) (Walpole & Myers, 1985):

s20:469 ¼
X

ðr0:469 � 0:25r2:1Þ
2=ðn� 2Þ; ð10aÞ

s20:555 ¼
X

ðr0:555 � 0:33r2:1Þ
2=ðn� 2Þ; ð10bÞ

s20:645 ¼
X

ðr0:645 � 0:50r2:1Þ
2=ðn� 2Þ: ð10cÞ

where n is the number of observations (n = 18 in the current

case). The resulted s2 values were calculated to be 9.41E� 5,

2.46E� 3, and 3.06E� 4 for the blue, green, and red bands,

respectively. These low values show how close the observed

values are from the hypothetical model. For example, in the

blue and red channels, which are used for remote sensing of

Fig. 2. Relationships between the visible spectral bands (blue, green, and red) and the SWIR bands (1.6 and 2.1 mm) for the Israeli data set.
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aerosol, it corresponds to error in estimated surface

reflectance of 0.01 and 0.017, respectively. This is within

the acceptable error margins for aerosol studies (Kaufman et

al., 1997).

Among the above relationships, the very high correla-

tion coefficient between the red and the 2.1-mm band

(r=.98) along with the corresponding low s2 have a special

interest since both bands can be corporately involved in a

new VI, where the 2.1-mm band replaces the red one. Thus,

it is hereby suggested to modify the NDVI (Eq. (1)) into a

new index by the name of Aerosol FRee Vegetation Index

(AFRI):

AFRI2:1 ¼ ðrNIR � 0:5r2:1Þ=ðrNIR þ 0:5r2:1Þ ð11aÞ

Table 3

Correlation matrix among various VIs for the Israeli data set

NDVI SAVI ARVI SARVI NDVIMIR1.6 NDVIMIR2.1 SAVIMIR1.6 SAVIMIR2.1 AFRI1.6 AFRI2.1

NDVI 1

SAVI .91 1

ARVI 1.00 .91 1

SARVI .93 1.00 .93 1

NDVIMIR1.6 .96 .93 .96 .93 1

NDVIMIR2.1 .98 .91 .98 .92 .98 1

SAVIMIR1.6 .94 .97 .94 .97 .99 .96 1

SAVIMIR2.1 .96 .97 .96 .97 .97 .98 .98 1

AFRI1.6 .98 .91 .98 .92 .97 1.00 .96 .98 1

AFRI2.1 .98 .90 .98 .91 .97 1.00 .95 .97 1.00 1

Values in bold have special interest for the current study.

Fig. 3. NDVI vs. AFRI and NDVI vs. NDVIMIR for the Israeli data set.
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or in case of the 1.6-mm band, based on Eq. (7c) (Eq. (11b)):

AFRI1:6 ¼ ðrNIR � 0:66r1:6Þ=ðrNIR þ 0:66r1:6Þ: ð11bÞ

Table 3 demonstrates a correlation matrix between all the

above-mentioned VIs. General observation shows consid-

erable high correlation (r > .90) among all VIs. However,

several relationships have to be further discussed. On a clear

day, as was occurred during the Israeli field campaign, the

proposed AFRI1.6 and AFRI2.1 correlates highly (r=.98)

with either NDVI or ARVI, which have a perfect correlation

(r = 1.0) between them. Perfect correlation also exists

between the AFRI2.1 and the NDVIMIR2.1. This is quite

obvious since mathematically both indices relate linearly to

each other. Also note that in this particular case, AFRI1.6
and AFRI2.1 correlate perfectly.

The relationships between the NDVI and the AFRI1.6 and

AFRI2.1 are presented in Fig. 3. It can be seen that on a clear

day the AFRI (especially AFRI2.1) and the NDVI are related

extremely close to each other with negligible intercept, and

slope very close to the 1:1 line. Obviously, the NDVIMIR

indices can function equally, but they cannot be conven-

iently used as illustrated in Fig. 3 due to their dynamic

range. The NDVIMIR indices produce negative values and

do not match the NDVI as close as the AFRIs do in terms of

slope and intercept. It can be concluded that the AFRI2.1 can

be an excellent replacement for the NDVI and practically

can be used for the applications listed above. In addition to

these regular tasks, it is hypothesized that the proposed new

VIs, AFRI1.6 and AFRI2.1, also have the advantage over the

NDVI by their ability to penetrate the atmospheric column

affected by smoke and thus offer additional function that

cannot be implemented by the traditional NDVI. Such an

application is presented in the next subsection.

For each of the selected images the vegetation fraction

(F) was derived. Fig. 4 shows the surface reflectance at

0.469 and 0.645 mm as a function of the reflectance at 2.1

mm. The color of the symbol indicates the vegetation

fraction, from green (high F) to brown (low F). It has to

be remarked that the vegetation fraction is a weaker function

of the reflectance at 2.1 mm than the reflectance in the

visible channels. Apparently in this mix of vegetation

covers, the reflectance is determined as much by the

vegetation type as by the vegetation fraction. However,

the dark pixels (reflectance at 2.1 mm<0.15) were domi-

Fig. 4. The surface reflectance at 0.469 and 0.645 mm as a function of the reflectance at 2.1 mm. The color of the points changes from brown for vegetation

fraction F < 0.2 to green for F >0.8. The median value of the vegetation fraction for three ranges of the surface reflectance at 2.1 mm is given with the standard

deviation. The red and blue lines are the best fits for all the data for each spectral channel. The black lines are the 25% and 50% lines for the blue and red,

respectively, as hypothesized by Kaufman et al. (1997).
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nated by high vegetation fractions of 0.61 ± 0.18, and the

bright pixels by low vegetation fractions 0.36 ± 0.27. It is

also interesting to note that the same linear relationship of

close to 0.5 and 0.25 for the red and blue bands, respec-

tively, that is observed for dark surfaces with high vegeta-

tion fraction continues for brighter surface with low

vegetation fraction. Therefore, Fig. 4 demonstrates the

transition from highly vegetated surfaces to sparsely vege-

tated with an increase in the reflectance at 2.1 mm and the

visible bands. It also demonstrates that the linear relation-

ships established for highly vegetated surfaces hold for

sparse vegetation. In fact, the reflectance at 0.469 mm can

be predicted from the reflectance at 2.1 mm, with an average

absolute error of 0.007–0.010, independent of the range of

the 2.1-mm band. The absolute error here is the average of

|0.25r2.1� r0.469|. The average of the error in the red

|0.5r2.1� r0.645| increases with the 2.1-mm reflectance from

0.007 for the dark surfaces to 0.18 for the bright surfaces.

Fig. 5. AVIRIS image of one of the case studies for the SCAR-B campaign in Brazil, 1995. (A) True color composite (RGB= 0.645, 0.555, 0.469); (B) SWIR

composite (RGB=1.6, 1.2, 2.1); (C) NDVI; (D) AFRI: (I) smoke-free zone, (II) heavy-smoke zone, (III) light-smoke zone.
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This linearity and predictability makes it possible to derive

the aerosol optical thickness even over desert regions, as

suggested earlier by Kaufman, Karnieli, and Tanré (2000).

4.2. Implementation of AFRI to Brazilian smoke

The area around Cuiabá, Brazil (9.9�S, 56.1�W) that was

affected by heavy biomass burning on August 25, 1995, was

used as one of the case studies for the SCAR-B field

campaign (Kaufman et al., 1998). The fire and its smoke

plume were scanned by the AVIRIS spectral imager on

board of the ER-2 aircraft. Fig. 5A is a true color composite

of the region, which covers 12	 16 km2, where RGB

represent the red, green, and blue bands, respectively. Fig.

5B shows the same image by means of three SWIR bands.

RGB is a composite of the 1.6-, 1.2-, and 2.1-mm bands,

respectively. It demonstrates that the heavy smoke, which is

visible in the shorter wavelengths, is almost transparent in

the SWIR region and only the active fire source can be

observed. Fig. 5C demonstrates the common NDVI product

image. It can be noticed that the NDVI is highly contami-

nated by the smoke. The results are relatively low NDVI

values that lead to a wrong interpretation of the state of

vegetation masked by the smoke. On the other hand, the

proposed VI, AFRI2.1 (Eq. (11a)), which is based on the 2.1-

mm band rather than the red (Fig. 5D), allows assessment of

vegetation properties as well as other ground features

beneath the smoke.

Fig. 5C and D were subdivided into four zones, 48 km2

each. Zone I is characterized by smoke-free conditions,

Zone II is characterized by heavy smoke, and Zone III is

characterized by light smoke. The fourth zone, which

contains the active fire source, was not used for the

following analysis. The relationships between the NDVI

and AFRI2.1 were tested in Fig. 6 for the three zones in

image in Fig. 5C and D. In the smoke-free zone, as

expected, there is a high correlation between the two

indices (r=.97). The scatterplot between them is close to

the 1:1 line, with intercept of 0.01 and slope of 0.81 (Fig.

6A). Once smoke is introduced, the correlation coefficients

drop to .79 and .69 for light and heavy no homogeneous

smoke, respectively (Fig. 6B and C). Similarly, the slopes

of the scatterplots drop to 0.78 and 0.59 for the light- and

heavy-smoke regions.

Comparison between the derived NDVI and other VIs

forthe Brazilian data set, in terms of correlation coefficients,

is presented in Table 4. It can be seen that in the clear

(smoke-free) area of the image (Fig. 5D: I), all VIs are

highly correlated with the NDVI. However, under the

smoky conditions (Fig. 5D: II and III), where the AFRIs

show relatively low correlation coefficients, ARVI and

SARVI, which are supposed to correct for the atmospher-

icaerosols, remain highly correlative with the NDVI. Based

on Fig. 5D, it is evident that all indices that are in correlation

with NDVI cannot present the vegetation state as well as the

AFRIs do.

Fig. 6. Relationships between NDVI and AFRI2.1 for the Brazilian data set

under different atmospheric conditions: smoke-free zone, area with light

zone, and zone with heavy smoke. Zones are corresponding to Fig. 5C

and D.
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5. Concluding remarks

� For clear-sky conditions, the SWIR spectral bands

around 1.6 and 2.1 mm are highly correlated with the visible

— blue, green, and red — spectral bands. Simple linear

relationships, such as r0.469 = 0.25r2.1, r0.555 = 0.33r2.1,
r0.645 = 0.5r2.1, and r0.645 = 0.66r1.6, were found to be stat-

istically significant.� Based on the above relationships, two new VIs are

proposed, denoted as AFRI1.6 and AFRI2.1. They are built

similarly to the NDVI structure, but the respective portion of

the SWIR bands substitute for the red band. In clear-sky

conditions, the AFRIs (and especially AFRI2.1) closely

resemble the NDVI. Their values are almost identical.� The advantage of the derived AFRIs is based on the

ability of the SWIR bands to penetrate the atmospheric

column even when aerosols such as smoke or sulfates exist.

Consequently, these indices have a major application in

assessing vegetation in the presence of smoke, anthropo-

genic pollution, or volcanic plumes. Limited success is

expected in case of dust due to presence of larger particles

that are of similar size to the wavelength, and therefore not

transparent at 2.1 mm (see Kaufman et al., 2000).� The 0.25 and 0.5 rules are independent of the vegeta-

tion fraction. The same linear relationships that are observed

for dark surfaces with high vegetation cover continue for

brighter surface with sparse vegetation cover.� In terms of correlation with the NDVI, the AFRIs were

found to be similar to the earlier proposed NDVIMIR indices.

However, the latter indices produce negative values and are

not as equivalent to the NDVI values as the AFRIs do.

When correlating with the NDVI values, the intercept of the

NDVIMIR is not 0 and its slope is not 1. Consequently, the

AFRIs are more convenient to use and interpret.� The AFRIs can be implemented with an image that is

acquired by any sensor that contains the SWIR bands.

Currently, the most commonly used of such instruments

are the Landsat TM and ETM+, MODIS, and ASTER on

board of the Terra satellite, and JERS-OPS.� Although the AFRI2.1 was demonstrated to perform

better than the AFRI1.6, the latter still can be used for the

same application in conjunction with instruments that have

onboard only the 1.6-mm band, such as SPOT4-VEGETA-

TION, IRS-1C/D, and Resource-21.
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Aerosol retrieval over land from AVHRR data — application for atmos-

pheric correction. IEEE Transactions on Geoscience and Remote Sens-

ing, 30, 212–232.

Huete, A. (1987). Soil influence in remote sensed vegetation-canopy spec-

tra. In: C. Elachi (Ed.), Introduction to the physics and techniques of

remote sensing ( pp. 107–141). New York: Wiley-Interscience.

Huete, A. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing

of the Environment, 25, 295–309.

Huete, A., & Liu, H. Q. (1994). An error and sensitivity analysis of the atmos-

pheric- and soil-correcting variants of the NDVI for the MODIS-EOS.

IEEE Transactions on Geoscience and Remote Sensing, 32, 897–905.

Hunt, E. R., & Rock, B. N. (1989). Detection of changes in leaf water

content using near- and middle-infrared reflectances. Remote Sensing of

the Environment, 30, 43–54.

Justice, C. O., Townshend, J. R. G., Holben, B. N., & Tucker, C. J. (1985).

Analysis of the phenology of global vegetation using meteorological

satellite data. International Journal of Remote Sensing, 6, 1271–1318.

Kaufman, Y. J., Hobbs, P. V., Kirchhoff, V. W. J. H., Artaxo, P.,

Remer, L. A., Holben, B. N., King, M. D., Ward, D. E., Prins, E. M.,

Longo, K. M., Mattos, L. F., Nobre, C. A., Spinhirne, J. D., Ji, Q.,

Thompson, A. M., Gleason, J. F., Christopher, S. A., & Tsay, S. C.

(1998). Smoke, Clouds, Radiation — Brazil (SCAR-B) experiment.

Journal of Geophysical Research, 103, 31783–31808.

Kaufman, Y. J., Karnieli, A., & Tanré, D. (2000). Detection of dust over

deserts using satellite data in the solar wavelengths. IEEE Transactions

on Geoscience and Remote Sensing, 38, 525–531.

Kaufman, Y. J., & Remer, L. A. (1994). Detection of forests using mid-IR

reflectance — an application for aerosol studies. IEEE Transactions on

Geoscience and Remote Sensing, 32, 672–683.
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